

Agilent 89441V dc to 2.65 GHz VSB/QAM Signal Analyzer

Data Sheet

Agilent Technologies 89441V

Specifications describe warranted performance over the temperature range of 0° to 55°C (except where noted) and include a 30-minute warm-up from ambient conditions, automatic calibrations enabled, auto-zero on, time domain calibration off, and anti-alias filter in, unless noted otherwise. Supplemental characteristics, identified as "typical" or "characteristic," provide useful information by giving non-warranted performance parameters. Typical performance is applicable from 20° to 30°C.

When enabled, automatic calibrations are periodically performed to compensate for the effects of temperature and time sensitivities. During the calibration, no signals >0 dBm should be connected to the front panel inputs.

Definitions

Baseband: dc to 10 MHz measurements.

Baseband time: Time-domain measurements selected by setting start frequency to exactly 0 Hz or choosing full span in 0 to 10 MHz measurements.

dBc: dB relative to input signal level.

dBfs: dB relative to full scale amplitude range setting. Full scale is approximately 2 dB below ADC overload.

FS or fs: Full scale; synonymous with amplitude range or input range.

RBW: Resolution bandwidth.

RF: 2 MHz to 2.65 GHz measurements.

Scalar mode: Measurements with only frequencydomain analysis available. Frequency spans up to 2648 MHz.

SNR: Signal to noise ratio.

Vector mode: Measurements with frequency- and time-domain capabilities. Frequency spans up to 10 MHz in baseband, and 8 MHz for RF analysis.

Zoom time: Time-domain measurements selected by setting frequency parameters using center frequency and span values.

Agilent Technologies

Innovating the HP Way

Agilent 89441V Technical Data—Standard Features

Frequency dc to 2.650 GHz 51 to 3201 points Center frequency signal-tracking Instrument modes Scalar (frequency-domain only) Vector (amplitude and phase information in frequency- and time-domain and also time-gating) Sweep types Continuous, Manual, Single Triggering Free run External Input channel External arm IF channel Programmable polarity and GPIB level Trigger holdoff Pre and post delay Averaging Video Peak hold Video exponential Simultaneous display of Time instantaneous and average Time exponential spectrum **Source Types** CW, Random noise Input One channel Second 10 MHz input channel (optional) Auto-ranging (baseband only) **Overload indicators** $50/75/1M \Omega$ BNC (dc to 10 MHz) 50 Ω Type-N, 75 Ω with minimum-loss pad (2 MHz to 2650 MHz) **Resolution/window shapes** 1-3-10 bandwidth steps Arbitrary RBW Windows: Flat-top (high amplitude accuracy), Gaussian-top (high dynamic range), Hanning (high frequency resolution), Uniform Detectors: normal, positive peak, sample **Measurement data** Spectrum Time capture PSD Frequency response, Main time coherence, cross spectrum, Gate time and cross correlation (with Math function second 10 MHz input Data register channel) Auto correlation Instantaneous spectrum Additional data formats for video demodulation **Data format** Log magnitude Imaginary part Linear magnitude Group delay Phase (wrap or unwrap) Log/linear x-axis Real part

Trace math Display 1, 2, or 4 grids 1 to 4 traces displayed (single or overlay) Auto-scaling Color (user definable) User trace title and information Graticule on/off Data label blanking X-axis scaling Instrument/Measurement state displays External monitor Markers Marker search: Peak, next peak, next peak right, next peak left, minimum Marker to: Center frequency, reference level, start frequency, stop frequency Offset markers Couple markers between traces Marker functions: Peak track, frequency counter, band power (frequency, time, or demodulation results) peak/average statistics Memory and data-storage Disk devices Nonvolatile RAM disk (100 Kbyte) Volatile RAM disk (up to 1 Mbyte) 90 mm (3.5-inch) 1.44 Mbyte flexible disk (HP LIF or MS-DOS[®] formats) External GPIB disk Disk format and file delete, rename, and copy Nonvolatile clock with time/date Save/recall of: Trace data, instrument states, trace math functions, Instrument BASIC programs, time-capture buffers **Online help** Hard copy output **GPIB/HPGL** plotters GPIB/RS-232/parallel printers Plot to file Time stamp Single-plot spooling Interfaces GPIB (IEEE 488.1 and 488.2) External reference in/out External PC-style keyboard Active probe power RS-232 (one port) Centronics LAN and second GPIB Standard data format utilities **Optional features** Instrument BASIC (Option 1C2) Advanced LAN support (Option UG7)

Agilent 89441V Technical Data—RF

RF specifications apply with the receiver mode set to "RF section (2-2650 MHz)."

Frequency

Frequency tuning	
Frequency range	2 MHz to 2650 MHz
Frequency span	
Scalar mode	1 Hz to 2648 MHz
Vector mode	1 Hz to 8 MHz
Center frequency tuning resolution	0.001 Hz
Number of frequency	51 to 3201
points/span	
Signal track (when enabled	l) kaona tha largaat maaa

Signal track (when enabled) keeps the largest measured signal at the center frequency.

Frequency accuracy

(with standard high-precision frequency reference)

Frequency accuracy is the sum of initial accuracy, aging, and temperature drift.

Initial accuracy	± 0.1 ppm
Aging	± 0.015 ppm/month
Temperature drift	\pm 0.005 ppm (0° to 55°C)

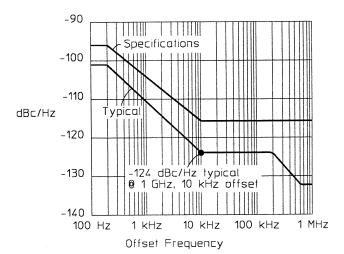

Frequency counter

The frequency counter operates in scalar or vector mode. Frequency counter accuracy:

Total accuracy is the sum of the frequency counter's basic accuracy and the instrument's frequency accuracy. Conditions/Exceptions:

Signal-to-noise ratio within resolution bandwidth, 20 dB minimum

Marker within $\frac{1}{2}$ resolution bandwidth of peak Unspecified for uniform window and resolution bandwidth < 5 Hz



Frequency counter basic accuracy

Stability (spectral purity)

(with standard high-precision frequency reference or equivalent with \geq 5 dBm level)

Phase noise (absolute and $F_{in} \leq 200 \text{ MHz}$	residual)
100 Hz offset	<
1 kHz offset	< -112 dBc/Hz
\geq 10 kHz offset	<-116 dBc/Hz
200 MHz \leq F _{in} \leq 1 GHz	
100 Hz offset	<-96 dBc/Hz
1 kHz offset	<-104 dBc/Hz
\geq 10 kHz offset	<-116 dBc/Hz
$1 \text{ GHz} \leq F_{\text{in}} \leq 2650 \text{ MHz}$	
100 Hz offset	<87 dBc/Hz
1 kHz offset	<97 dBc/Hz
\geq 10 kHz offset	<
LO spurious sidebands	
Offset > 1 kHz	< –75 dBc
$Offset \le 1 \text{ kHz}$	
$f_{in} \le 2 \text{ GHz}$	<-70 dBc
$f_{in} > 2 \text{ GHz}$	<-68 dBc

Agilent 89441V Technical Data—RF, continued

Resolution bandwidth

Range 312.5 µHz to 3 MHz in 1, 3, 10 sequence or arbitrary user-definable bandwidth

Note: In scalar mode, the minimum resolution bandwidth is 312.5 μ Hz and the maximum resolution bandwidth is a function of span. In vector mode, the minimum resolution bandwidth is a function of span and the number of frequency points, and the maximum resolution bandwidth is a function of span only.

Window	Selectivity*	Passband flatness	Sideband level
Flat-top	2.45:1	+ 0, -0.01 dB	–95 dBc
Gaussian-top	4.0:1	+ 0, -0.68 dB	—125 dBc
Hanning	9.1:1	+ 0, –1.5 dB	—32 dBc
Uniform	716:1	+ 0,4 dB	—13 dBc

* Shape factor or ratio of -60 dB to -3 dB bandwidths.

Amplitude

Input range	–50 dBm to + 25 dBm (5 dB steps)
Maximum safe input power	
Average continuous power	+ 25 dBm (300 mW)
DC voltage	25 V
A/D overload level (typical)	> 1.5 dB above range
Input port	1

1
1.6:1 (12.7 dB return loss)
1.8:1 (11 dB return loss)
50 Ω (75 Ω with minimum-
loss pad Option 1D7)
Type-N

Amplitude accuracy

Accuracy specifications apply with flat-top window selected.

Amplitude accuracy is the sum of absolute full-scale accuracy and amplitude linearity.

Absolute full-scale accuracy (with signal level equal to range)

	20° - 30°C	0° - 55°C
\ge –25 dBm range	± 1 dB	± 2 dB
	(0.5 dB typical)	
≤ –30 dBm range	± 1.5 dB	± 3 dB
	(0.5 dB typical)	

Amplitude linearity	
0 to –30 dBfs	< 0.10 dB
–30 to –50 dBfs	< 0.15 dB
-50 to -70 dBfs	< 0.20 dB

In vector mode, relative level accuracy within a single span is the sum of vector mode frequency response and amplitude linearity.

Vector mode frequency response ± 0.4 dB (relative to the center frequency)

Dynamic range

Dynamic range indicates the amplitude range that is free of erroneous signals within the measurement bandwidth.

Harmonic distortion (with a single full scale signal at the input)

\geq –25 dBm range	< –75 dBc	
\leq –30 dBm range	< –54 dBc	
Third-order intermodulation		<-75 dBc
distortion (with two input tones at		
6 dB below full scale and \geq 10 MHz)		

General spurious (with input signal level equal to range and input frequency $\leq 2650~\text{MHz})$

For spans \leq 1.5 MHz and for offset	< 75 dBc
frequencies \leq 1.5 MHz from input signal	
For all spans and offsets	<-70 dBc*
Residual responses (50 Ω input)	< - 80 dBfs

Input noise density (50 Ω input, vector mode or scalar mode with sample detector)**

	20° - 30°C	0° - 55°C
\geq –25 dBm range	<-115 dBfs/Hz	<-112 dBfs/Hz
\leq –30 dBm range	<-110 dBfs/Hz	<-109 dBfs/Hz

Sensitivity^{**} -50 dBm range <-160 dBm/Hz

< -159 dBm/Hz/Hz

*< -60 dBc for RF (2-2650 MHz)-wide ** Add 4 dB for RF (2-2650 MHz)-wide

Phase (vector mode)

Phase specifications apply with flat-top window selected.

Deviation from linear phase ± 5 deg (relative to best fit line with peak signal level within 6 dB of full scale)

Time (vector mode)

Time-sample resolution = 1/(k*span(Hz)) [second]; where k = 1.28 for zoom time.

Main time length = (number of frequency points -1) ÷ span (Hz) [second]; for resolution bandwidth in arbitrary and auto-coupled mode.

Amplitude accuracy (for a sine wave in the measurement passband, time-domain calibrations on, range ≥ -25 dBm) 20° - 30°C

0° - 55°C

± 12% full scale (± 6% typical) ± 26% full scale

Sample error rate for zoom time (typical)

Error threshold: 10⁻⁸ times/sample 5% full scale

Sample error rate reflects the probability of an error greater than the error threshold occurring in one time sample.

Trigger **Trigger types** Scalar mode

Vector mode

(each measurement step requires a separate trigger) Free run, IF channel, GPIB, external

Free run, GPIB, external

Pre-trigger delay range

(see time specifications for sample resolution) 011/ Or

Une channel	64 Ksamples (1 Misample with extended time capture,
	Option AY9)
Two channels (requires	32 Ksamples (0.5 Msample
second 10 MHz input,	with extended time capture,
Option AY7)	Option AY9)

2 Gsample

Post-trigger delay range

(see time specifications for sample resolution)

Trigger holdoff

Holdoff range

Input impedance

When enabled, each measurement requires two trigger events. The first event starts a holdoff timer. After the specified holdoff time, a subsequent trigger event will initiate a measurement. 2.5 µs 2 5 vs to 41 s Holdoff resolution

2.5	μs	to	4

IF trigger (characteristics only)

Used to trigger only on in-band energy, where the trigger bandwidth is determined by the measurement span (rounded to the next higher $10^7/2^n$ [Hz]). Amplitude resolution < 1 dB Amplitude ranges +1 to -70 dBfs. Useable range will become limited by the total integrated noise in the measurement span. IF trigger hysteresis < 4 dBExternal trigger (positive and negative slope) ± 0.5 V Level accuracy ±5 V Range Input impedance 10 k Ω (typical) **External** arm Level accuracy ± 0.5 V Range ±5 V

10 k Ω (typical)

Agilent 89441V Technical Data—RF, continued

Source (requires internal RF source Option AY8)

Source types

(vector mode and video demodulation)

CW (fixed sine), random noise

Frequency

Range Maximum offset from center frequency 2 MHz to 2650 MHz 3.5 MHz

Amplitude (fixed sine source type)

Amplitude range	-40 dBm to +13 dBm	
Typical maximum amplitude	+17 dBm	
(overdrive is available using		
direct numeric entry)		
Amplitude resolution	0.1 dB	

Amplitude accuracy (source level ≤ 13 dBm) Source amplitude accuracy is the sum of absolute accuracy at the center frequency (zero offset frequency) and the IF flatness.

	20° - 30°C	0° - 55°C
Absolute accuracy at the	± 1.2 dB	± 3.5 dB
center frequency		
IF flatness (relative to	± 1 dB	± 1.5 dB
center frequency)		
IF Flatness with		± 0.3 dB
$ offset frequency \leq 500 kH$	lz	

Dynamic range (source level \leq dBm) Harmonic distortion < -40 dBc Non-harmonic spurious < -40 dBc (within measurement bandwidth) Average noise level < -120 dBc/Hz (for offsets > 1 MHz from the carrier and carrier frequency >100 MHz. For offsets < 1 MHz, add the LO phase noise.)

 $\label{eq:crosstalk} \begin{array}{ll} \mbox{Crosstalk (source-to-receiver,} & < -80 \mbox{ dBfs} \\ \mbox{source level} \leq 0 \mbox{ dBm} \end{array}$

Source port

VSWR	
Level \leq –10 dBm	1.8:1 (11 dB return loss)
Impedance	50 Ω (75 Ω with optional
	minimum-loss pad)
Connector	Type-N

6

Agilent 89441V Technical Data—Baseband

Baseband specifications apply with the receiver mode set to "IF section (0-10 MHz)" or "RF section (0-10 MHz)" unless noted otherwise. Specifications noted as "IF section only" apply with the receiver mode set to "IF section (0-10 MHz)" and the input signal connected directly to the IF section's channel 1 or channel 2 input.

Frequency

Frequency tuning (characteristic only)

Frequency rangedc to 10 MHzFrequency span1.0 Hz to 10 MHzCenter frequency tuning resolution0.001 HzNumber of frequency points/span51 to 3201Signal track (when enabled) keeps the largest measuredsignal at the center frequency.

Frequency accuracy

Same as the RF specifications.

Frequency counter

Same as the RF specifications.

Stability (spectral purity)

Absolute and residual phase noise, F_{in} = 10 MHz (with standard high precision frequency reference or equivalent)

100 Hz offset	<
1 kHz offset	<
\geq 10 kHz offset	<-120 dBc/Hz

Phase noise decreases with decreasing input

```
frequency by 20 \log_{10} \left| \frac{Fin}{10 \text{ MHz}} \right| dB
```

Resolution bandwidth

Same as the RF specifications.

Amplitude

Input range (characteristic only)(2 dB steps)

50 Ω input 75 Ω input 1 M Ω input (referenced to 50 Ω) -30 dBm to + 24 dBm -31.761 dBm to +22.239 dBm -30 dBm to + 28 dBm

Auto-ranging (characteristic only)

Up-only, up-down, single, off

Input port

Input channels	1 (second 10 MHz input channel optional)
Return loss (IF section only)	
50 Ω input	> 25 dB
75 Ω input	> 20 dB
Coupling	dc/ac (ac coupling
	attenuation < 3 dB at 3 Hz)
Input Impedance	50/75 Ω , 1 M Ω ± 2%
(IF section only)	(< 80 pF shunt capacitance)
Connector	BNC (RF section: Type-N)

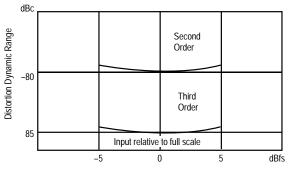
Amplitude accuracy

Accuracy specifications apply with flat-top window selected. Amplitude accuracy is the sum of absolute full-scale accuracy and amplitude linearity. Absolute full-scale accuracy ± 0.5 dB (IF section only, with signal level equal to range) Amplitude linearity 0 to --30 dBfs < 0.10 dB -30 to -50 dBfs < 0.15 dB -50 to -70 dBfs < 0.20 dB Residual dc (50 Ω) < -25 dBfs

Agilent 89441V Technical Data—Baseband, continued

Dynamic range

Dynamic range indicates the amplitude range that is free of erroneous signals within the measurement bandwidth.


Harmonic distortion

(with a single full scale signal at the input)

2nd	<-75 dBc (-80 dBc typical)
3rd, 4th, 5th	<-75 dBc (-85 dBc typical)

Intermodulation distortion

(with two input tones at 6 dB	below full scale)
Second-order	< -75 dBc (-80 dBc typical)
Third-order	< -75 dBc (-85 dBc typical)

Typical harmonic and intermodulation distortion

Residual (spurious) responses (IF section only) (50 Ω input and front panel connections to RF section disconnected)

Frequencies < 1 MHz	<-75 dBfs or <-100 dBm
	whichever is greater
Frequencies ≥ 1 MHz	<-80 dBfs
Alias responses	<-80 dBfs

Alias responses (for a single out-of-band tone at full scale)

Input noise density (50 Ω input, vector mode or scalar mode with sample detector)

scalar mode with sample detectory		
1 kHz to 40 kHz	<-101 dBfs/Hz	
40 kHz to 10 MHz	<-114 dBfs/Hz	
	(-118 dBfs/Hz typical)	
Sensitivity (-30 dBm range,		
50 Ω input, vector mode or		
scalar mode with sample deter	ctor)	
1 kHz to 40 kHz	<	
40 kHz to 10 Hz	<-144 dBm/Hz	
	(–148 dBm/Hz typical)	
Crosstalk	<85 dBfs	
(source-to-input or channel-		
to-channel, 50 Ω terminations)		

Phase (vector mode)

Phase specifications apply with flat-top window selected.

Deviation from linear phase ± 5 deg (relative to best fit line with peak signal level within 6 dB of full scale)

Time (vector mode)

Time-sample resolution = $1/(k^*span(Hz))$ [second]; where k = 1.28 for zoom time, 2.56 for baseband time measurements.

Main time length = (number of frequency points -1) ÷ span (Hz) [second]; for resolution bandwidth in arbitrary and auto-coupled mode.

Amplitude accuracy

(IF section only) (for a sine wave in the measurement

± 5% full scale

wave in the measurement passband, time-domain calibrations on)

Sample error rate for zoom time (typical)

Error threshold:	10 ^{-®} times/sample
5% full scale	

Sample error rate reflects the probability of an error greater than the error threshold occurring in one time sample.

Analog channel-to-channel < 1 ns time skew (IF section only) (time-domain calibrations on, both channels on the same range)

Two-channel

The second 10 MHz input channel (Option AY7) provides additional measurements, including frequency response, coherence, cross spectrum, and cross correlation. These measurements are made by comparing a signal on channel two to a signal on channel one or to a demodulated signal on the RF input.

Channel match \pm 0.25 dB, \pm 2.0 deg

(IF section only, at the center of the frequency bins, dc coupled, 16 rms averages, frequency response, full scale inputs, both inputs on the same range. Exclude the first 5 bins of the dc response.)

Trigger

Same as RF trigger specifications with the following additional specifications.

Input channel trigger (positive and negative slope)		
Level accuracy	± 10% full scale	
Range	± 110% full scale	
Resolution	Full scale/116 (typical)	

Source

Source types

Scalar mode Vector mode and video demodulation mode Random noise source % of energy in-band (Span = 10 MHz/2^N, N = 1 to 24) CW (fixed sine), CW, random noise

> 70%

Frequency Frequency range Frequency resolution	dc to 10 MHz 25 μHz
Amplitude Source level	
CW and random noise	–110 dBm to +23.979 dBm (50 Ω) 5.0 Vpk maximum
DC offset	± 3.42 V maximum (resolution and range of programmable dc offset is dependent on source amplitude)
Amplitude accuracy (50 Ω , fix (IF section only)	xed sine)
-46 dBm to +24 dBm	± 1.0 dB
–56 dBm to –46 dBm	± 2.0 dB
Harmonic and other spurious (fixed sine, 0 V dc offset)	products
dc to 10 kHz	< –55 dBc
10 kHz to 5 MHz	<-40 dBc
5 MHz to 10 MHz	< –33 dBc
Source port	
Return loss (IF section only)	> 20 dB

 $50/75 \Omega$

Source impedance

Agilent 89441V Technical Data—General

Safety and environmental

Safety and environment	tal
Safety standards	CSA Certified for Electronic
	Test and Measurement
	Equipment per CSA
	C22.2, No. 231
This product is designed	
for compliance to:	UL1244 and IEC348, 1978
Acoustics	LpA < 55 dB typical at
	25°C ambient
	(Temperature controlled fan
	to reduce noise output)
Temperature	
Operating	0° to 55°C
Internal disk operations	4° to 40°C
Storage (no disk in drive)	-20° to 65°C
Humidity, non-condensing	20 10 00 0
Operating	10% to 90% at 40°C
Internal disk operations	20% to 80% at 30°C
Storage (no disk in drive)	10% to 90% at 40°C
Altitude	
Operating (above	4600 m (15,000 ft)
2285 m (7,500 ft), derate	
operating temperature	
by –3.6°C/1000 m	
(-1.1°C/1000 ft))	
Storage	4600 m (15,000 ft)
Calibration interval	1 year
Warm-up time	30 minutes
Power requirements	
115 VAC operation	
IF section	90 - 140 Vrms, 47 - 440 Hz
RF section	90 - 140 Vrms, 47 - 63 Hz
230 VAC operation	198 - 264 Vrms, 47 - 63 Hz
Maximum power dissipation	
IF section	750 VA
RF section	275 VA

IEC 801-3 (Radiated Immunity) Performance degradation may occur at Severity Level 2.

Physical

Weight	IF section RF section	25 kg (55 lb) 25 kg (55 lb)
Dimensions		
IF section	Height	230 mm (9.1 in)
	Width	426 mm (16.7 in)
	Depth	530 mm (20.9 in)
RF section	Height	173 mm (6.8 in)
	Width	419 mm (16.5 in)
	Depth	495 mm (19.5 in)

Real-time bandwidth (characteristics only)

Real-time bandwidth is the maximum frequency span that can be continually analyzed without missing any time segment of the input signal.

Frequency spans of $10^7/2^n$ Hz, arbitrary auto-coupled resolution bandwidth, markers off, one display trace with calculations off on other traces, and maximum frequency points equal to number of frequency points.

Averaging off

Single-channel vector mode78(log magnitude spectrum48measurement data, 1601frequency points, channel2 off, averaging off)

78.125 kHz, 48 updates/second

Two-channel vector mode39.0625 kHz,(requires second 10 MHz48 updates/secondinput channel, Option AY7)(Log magnitude frequencyresponse measurement data,801 frequency points,averaging off)(Log magnitude frequency)

Averaging

Single-channel vector mode averaging (log magnitude spectrum measurement data, 1601 frequency points, channel 2 off)

Fast average78.125 kHzDisplayed78.125 kHz,48 updates/second

Two-channel vector mode averaging (requires second 10 MHz input channel, Option AY7) (Log magnitude frequency response measurement data, 801 frequency points)

Fast average	39.0625 kHz
Displayed	39.0625 kHz,
	48 updates/second

Measurement speed

Display update speed (vector mode with full span, one or two channels, 401 frequency points, no averaging, markers off, single trace with calculations off on other traces, log magnitude spectrum, frequency spans of $10^7/2^n$ Hz): 60/second

Averaging (characteristics only)

Number of averages	1 to 99,999
Overlap averaging	0% to 99.99%
Average types	
Scalar mode	rms (video), rms (video) exponential, peak hold
Vector mode	rms (video), rms (video) exponential, time, time

Fast averaging allows averaging a user-defined number of measurements without updating the displayed result. This provides faster averaging results for most measurements.

exponential, peak hold

Gating (characteristics only)

Time-selective, frequency-domain analysis can be performed on any input or analog demodulated time-domain data. When gating is enabled, markers appear on the time data: gate length and delay can be set directly. Independent gate delays can be set for each input channel. See time specifications for main time length and time resolution details.

Gate length

Maximum: Main time length

Minimum: Approximately window shape \div (0.3 x span (Hz)) [seconds]; where window shape (ws) and minimum gate length for a 10 MHz zoom time span are (for 10 MHz baseband time spans subtract 39.0625 ns):

Window	ws	Minimum gate length
Flat-top	3.819	1.328125 µs
Gaussian-top	2.215	781.25 ns
Hanning	1.5	546.875 ns
Uniform	1.0	390.625 ns

Time-capture (characteristics only)

Direct capture of input waveforms can be accomplished with spans of 10 MHz/2ⁿ Hz. See time specifications for time-sample resolution details.

Time capture memory: 64 Ksample; 1 Msample (Option AY9)

Benchmarks: For a one-channel, zoom time measurement (for baseband time, halve the time), 64 Ksample captures from 5.12 ms in a 10 MHz span to over 11.9 hours in a 1.19 Hz span. The optional 1 Msample captures from 81.92 ms in a 10 MHz span to over 190 hours in a 1.19 Hz span. Memory is shared if two channels are enabled, therefore length of capture is half as long.

Band power marker (characteristics only)

Markers can be placed on any time, frequency, or demodulated trace for direct computation of band power, rms square root (of power), C/N, and C/N_0 within the selected portion of the data.

Peak/Average statistics

Peak and peak-to-average statistics can be enabled on main time, gate time, IQ measured timed, IQ reference time, and math functions involving these trace types. Average power and peak statistics are computed using all samples in the active trace. Each successive trace adds additional samples to the calculations.

Displayed results	average power peak power peak/average ratio number of samples
Peak percent	90% - 99.99%. Setting can be changed at any time during or after the measurement
Signal characteristics Peak power range	+ 13 dB relative to average
	power of the first time record
Average power range	+ 3 dB relative to average power of the first time record

Agilent 89441V Technical Data—General, continued

Display (characteristic	only)	External reference in/out l	Esection
Trace formats	One to four traces on one, two, or four grids or a quad display	External reference input	Locks to a 1, 2, 5, or 10 MHz signal (± 10 ppm) with a level > 0 dBm
Other displays	On-line help text, view state	External reference output	Output the same frequency as the external reference
Number of colors	User-definable palette		input at a level of > 0 dBm into a 50 Ω load.
Display points/trace	401		
		External reference in/out R	
User-definable trace titles		External reference input	Locks to a 1, 2, 5, or
X-axis scaling	Allows expanded views of portions of the trace information		10 MHz signal (\pm 10 ppm) with a level > 0 dBm (use \geq 5 dBm for optimum phase noise performance).
Display blanking	Data or full display	External reference output	Outputs 10 MHz at > 0 dBm (+6 dBm typical) into a 50 Ω
Graticule on/off			load.
Center	± 5 mm referenced to bezel	GPIB	
Center		Implementation of IEEE Std	488 1 and 488 2
Dimensions	opening	SH1, AH1, T6, TE0, L4, LE0, S	
Height	105 ± 5mm	C1, C2, C3, C12, E2	
Width	147± 5 mm		
Diagonal	180.6 mm (7.1 in)	Benchmark characteristics	
		(typical transfer rate of 401	frequency-point traces)
Status indicators		Scalar	25 traces/second
	al trigger, source on/off, trigger,	Vector	20 traces/second
pause, active trace, remote,		RS-232	Serial port (9-pin) for
			connection to printer
External DC atula kayb	aard interface	Centronics	Parallel port for connection to
External PC-style keyb	1-key keyboard, such as the HP		a printer
C1405B with HP C1405-6001			
C1405B WILLI HF C1405-000	15 adapter.	External monitor output	
		Format	Analog plug-compatible with
Interfaces (characteris		lucus e de marc	25.5 kHz multi-sync monitors
Active probe power	+15 Vdc, –13 Vdc; 150 mA	Impedance	75 Ω 0 to 0.7 V
	maximum, compatible with	Level Display rate	60 Hz
Compared (mathemath)	Agilent active probes	Horizontal refresh rate	25.5 kHz
Sync out (not used)	Active low TTL level signal synchronous with source	Horizontal lines	400
	output of periodic chirps and	Honzontai mico	100
	arbitrary blocks up to 8192	Second GPIB	Implementation of IEEE

LAN

Std 488.1 and 488.2

ThinLAN BNC

samples.

Peripherals

Plot/print

Direct plotting and black-and-white printing to parallel (Centronics), serial (RS-232), and GPIB graphics printers and plotters. Printers supported include the HP LaserJet, HP PaintJet, HP ThinkJet, HP DeskJet, and HP QuietJet. Single-plot spooling allows instrument operation while printing or plotting a single display.

Memory and data storage Disk devices

Nonvolatile RAM disk Volatile RAM disk	100 Kbytes 5 Mbytes that can be partitioned between measurement, Instrument BASIC program space and RAM.
Internal 90 mm (3.5-inch) flexible disk (HP LIF or MS-DOS® formats)	1.44 Mbyte
External disk	GPIB interface

Disk format and file delete, rename, and copy

Nonvolatile clock with time/date

Save/recall can be used to store trace data, instrument states, trace math functions, Instrument BASIC programs, and time-capture buffers.

Benchmarks

(typical disk space requirements for different file types)Trace data (401 points)6.2 KbyteInstrument state12.3 KbyteTrace math2 KbyteTime-capture buffers271 Kbyte(32 Ksamples)

Trace math Operands	measurement data, data register, constant, other trace math functions, jw
Operations	+, -, *, /, cross correlation, conjugate, magnitude, phase, real, imaginary, square root, FFT, inverse FFT, natural logarithm, exponential

Trace math can be used to manipulate data on each measurement. Uses include user-units correction and normalization.

Marker functions

Peak signal track, frequency counter, band power peak/ average statistics.

Standard data format utilities

Included on two 90 mm (3.5-inch) 1.44 Mbyte flexible disks and two 130 mm (5.25-inch) 1.2 Mbyte floppy disks. The utilities run in MS-DOS[®] 2.1 or greater on an IBM PC (AT or higher) or compatible. The utilities include conversions to standard data format (SDF), PC displays of data and instrument state information, and utilities for conversion to PC-MATLAB, MATRIX_x, data set 58 and ACSII formats.

Agilent 89441V Technical Data—General, continued

Digital video modulation analysis

Supported modulation formats

Modulation formats

8 and 16VSB 16, 32, 64 and 256QAM 16, 32, and 64QAM (differentially encoded per DVB standard)

Frequency span

The (2 - 2650 MHz)-wide receiver mode increases the maximum allowable vector frequency span to 8 MHz. Specifications for this mode are in the RF specification section.

Maximum symbol rate

The 89441V analyzes vector modulated signals up to a maximum symbol rate determined by the information bandwidth of the receiver mode and the excess bandwidth factor (α) of the input signal, according to:

 $Max Symbol Rate \leq \underline{Information Bandwidth}_{1 + \alpha}$

Example: For a 64 QAM signal ($\alpha = 0.15$), the maximum symbol rate for the (2-2650 MHz)-wide receiver is 8 MHz/(1.15) = 6.96 Msymbols/second.

* Downconverter dependent.

Measurement results

I-Q measured	Time, spectrum
(Filtered, carrier locked,	
symbol locked)	
I-Q reference	Time, spectrum
(Ideal, computed from	
detected symbols)	
I-Q error vs. time	Magnitude, phase
(I-Q measured vs.	
reference)	
Error vector	Time, spectrum
(Vector error of computed	
vs. reference)	
Symbol table + error	Error vector magnitude is
summary	computed at symbol times only

Display formats

The following trace formats are available for measured data and computed ideal reference data, with complete marker and scaling capabilities and automatic grid line adjustment to ideal symbol or constellation states. Polar diagrams Constellation: Samples displayed only at symbol times Vector: Display of trajectory only at symbol times with 1 to 20 points/symbol I or Q vs time Eye diagrams: Adjustable from 0.1 to 10 symbols Trellis diagrams: Adjustable from 0.1 to 10 symbols Continuous error vector magnitude vs. time Continuous I or Q vs. time Error summary Measured rms and peak values of the following: Error vector magnitude Magnitude error Phase error Frequency error (carrier offset frequency) I-Q offset SNR and MER for QAM + VSB formats VSB pilot level is shown, is dB relative to nominal. For VSB formats, SNR is calculated from the real part of the error vector only. For DVB formats, EVM is calculated without removing IQ offset. Detected bits (symbol table) Binary bits are displayed and grouped by symbols. Multiple pages can be scrolled for viewing large data blocks. Symbol marker (current symbol shown as inverse video) is coupled to measurement trace displays to identify states with corresponding bits. Bits are user-definable for absolute states or differential transitions. Accuracy Residual errors (typical)

8VSB or 16VSB, symbol rate = 10.762 MHz,
 $\alpha = 0.115$, instrument receiver mode of IF 0-10 MHz
or RF 2 - 2650 MHz, 7 MHz span, full-scale signal,
range ≥ -25 dBm, result length = 800, averages = 10.
Residual EVM $\leq 1.5\%$ (SNR \geq 36 dB)

16, 32, 64 or 2560AM, symbol rate = 6.9 MHz, α = 0.15, instrument receiver mode of IF 0 - 10 MHz or RF 2-2650 MHz - wide, 8 MHz span, full-scale signal, range \geq -25 dBm, result length = 800, averages = 10. Residual EVM \leq 1.0% (SNR \geq 40 dB)

Filtering

All filters are computed to 40 symbols in length

Filter types	Root Raised-Cosine
User-selectable	Alpha continuously
filter parameters	adjustable from 0.05 to 1.0

Adaptive equalization

The 89441V equalizes the digitally-modulated signal to remove effects of linear distortion (such as unflatness and group delay) in a modulation quality measurement.

Equalizer performance is a function of the filter design (e.g., length, convergence, taps/symbol) and the quality of the signal being equalized.

Equalizer

Decision-directed, LMS, feed-forward equalization with adjustable convergence rate.

Filter length Filter taps 3 to 99 symbols, adjustable 1,2,4,5,10, or 20 taps/symbol

Measurement results

Equalizer impulse response Channel frequency response

4 Mbytes Extended RAM and additional I/O Extended RAM

Extended memory type: 4 Mbytes dynamic RAM Approximately 6 Mbytes, user-allocatable to measurement memory, RAM disk, and IBASIC program space.

LAN I/O

LAN support: Ethernet (IEEE 802.3) TCP/IP LAN interface: ThinLAN (BNC connector) or AUI Recommended MAU: Agilent 28685B (I0base-T) or 28683A (FDDI)

Program interface: Send and receive GPIB programming codes, status bytes and measurement results in ASCII and/or binary format.

GPIB I/0

Secondary GPIB port: Per IEEE Std 488.1 and 488.2 Functions: Controller-only; accessible from IBASIC program or front panel commands.

Advanced LAN support—Option UG7

Remote X11 display (characteristic only) Update rate: > 20 per second, depending on workstation performance and LAN activity. XII R4 compatible X-terminals, UNIX workstations, PC with X-server software Display 640 x 480 pixel minimum resolution required; 1024 x 768 recommended.

FTP data (characteristic only)

Traces A, B, C, D Data registers D1 - D6 Time capture buffer Disk files (RAM, NVRAM, floppy disk) Analyzer display plot/print

Agilent Technologies' Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

"Our Promise" means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage

"Your Advantage" means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, outof-warranty repairs, and on-site education and training, as well as design, system integration, project management, and other professional services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products. By internet, phone, or fax, get assistance with all your test and measurement needs.

Online Assistance

www.agilent.com/find/assist

Phone or Fax United States:

(tel) 1 800 452 4844

Canada: (tel) 1 877 894 4414 (fax) (905) 206 4120

Europe: (tel) (31 20) 547 2323 (fax) (31 20) 547 2390

Japan: (tel) (81) 426 56 7832 (fax) (81) 426 56 7840

Latin America: (tel) (305) 269 7500 (fax) (305) 269 7599

Australia: (tel) 1 800 629 485 (fax) (61 3) 9272 0749

New Zealand: (tel) 0 800 738 378 (fax) (64 4) 495 8950

Asia Pacific: (tel) (852) 3197 7777 (fax) (852) 2506 9284

Product specifications and descriptions in this document subject to change without notice.

Copyright © 1997, 2000 Agilent Technologies Printed in U.S.A. 5/00 5966-0437E

